If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21r^2+29r-10=0
a = 21; b = 29; c = -10;
Δ = b2-4ac
Δ = 292-4·21·(-10)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-41}{2*21}=\frac{-70}{42} =-1+2/3 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+41}{2*21}=\frac{12}{42} =2/7 $
| 8n+12=-12+5n | | 16z^2-64z+62=0 | | 15=8+n/2 | | -2d=2d | | 7(-3+2y)=8(3y-2) | | 6•2/3x=24 | | 3x-4+(x/2)=126 | | -5+4x=51 | | 3(z+14)-25=41 | | 50x+101=25x+1 | | 4(b+4)-34=66 | | 4x-19=6x+6 | | 67-r=-32 | | 28^2-17x-3=0 | | 28*2-17x-3=0 | | -4(p+14)=-12 | | 1a=3a | | 3=-8+k | | 1/3x+5=10/3+20 | | x(4x)=256 | | 2/3(x-4)=15 | | 1/2(x+1)+1/4=2/3x-16x+3/4 | | 5y+2=y+34 | | 2/4(x-4)=15 | | -2-9p=-137 | | 10-t=16 | | 20=4(d+2) | | .2h+.3(h-6)=0.83h+2 | | -11=-5+n/3 | | 1/3(x+15)=31/3+20 | | x(7x+3)=2x^2-36x+54 | | 5x^=75 |