If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21z^2+32z+12=0
a = 21; b = 32; c = +12;
Δ = b2-4ac
Δ = 322-4·21·12
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4}{2*21}=\frac{-36}{42} =-6/7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4}{2*21}=\frac{-28}{42} =-2/3 $
| 1/3(6y-9)=-2y/13 | | 9/15=x/5 | | (6K-5m)2=25m2+6^2 | | Y=950x+350 | | (x=3)(x=4) | | 1(x=7)=14 | | 6-3(5p+2)=0 | | x4+8=17 | | 0=-2x^2+16x^2+88x | | y=2.50+3.50= | | X-2=3y-2 | | 12k+8/5=16 | | ∑x=15x | | 19.95+.99+65.32p=144.67 | | -6x+5=3 | | 5.30p+2.50p=55.20 | | -7x-8=-4 | | (2/3)+(3m/5)=32/15 | | x+x+4=x-5 | | x+32=28-32 | | -7x-6=4 | | 4.05=20t-5t^2+1 | | x^2+x-2x^2+2x=0 | | −6x^2=−5x+1 | | 7/12x=3/1 | | 7x+2=-3x+4 | | 7(2b+5)=63 | | 20t-5t^2-1=0 | | 3x-22=8x+8 | | 1.3x=1.3x6.3 | | 20y^2+11y=4 | | 20y^2+11y=420y2+11y=4. |