If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21z^2+85z-26=0
a = 21; b = 85; c = -26;
Δ = b2-4ac
Δ = 852-4·21·(-26)
Δ = 9409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9409}=97$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(85)-97}{2*21}=\frac{-182}{42} =-4+1/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(85)+97}{2*21}=\frac{12}{42} =2/7 $
| 2x10=20+5=25 | | X+1/6=1/3+x-6/4 | | 4x-(2x-6)=16+x | | -9-y=9 | | 5x-5x^2=x | | 5x-5^2=x | | 11w-42=52 | | (7a+2)=(5a+1) | | 55+21=x | | 10x^2-4=66 | | 5^2x+50=625^3x | | 6+4(x-4)=2(x-8) | | 3^x*9=81 | | m=33=16 | | 2x-13=2(x-12) | | t÷3=10 | | 16x+8=15x+9 | | 5x=8x-18 | | -2x/3+5=3x/2+2x | | 3^(x)-4=2 | | -21/3x=2/3-(-21/3 | | x+3/4=2x+1/7 | | (x+3)/4=(2x+1)/7 | | 2/5+x/4=5/6 | | -10+2x+6+7x-9=3x-6-2x+9 | | 1/2(4x+8)-14=-1/5(35x-25) | | x-3x=-2+x | | 7x-21=89 | | 148-(7x+10)=7(x+9)+x | | 6x/5=-x/2-1 | | -3/4+5x/4=-2x/5-1/3 | | 3x+4x+30=84+3x-2x |