22-(3c+4)=2(c+3)c

Simple and best practice solution for 22-(3c+4)=2(c+3)c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 22-(3c+4)=2(c+3)c equation:



22-(3c+4)=2(c+3)c
We move all terms to the left:
22-(3c+4)-(2(c+3)c)=0
We get rid of parentheses
-3c-(2(c+3)c)-4+22=0
We calculate terms in parentheses: -(2(c+3)c), so:
2(c+3)c
We multiply parentheses
2c^2+6c
Back to the equation:
-(2c^2+6c)
We add all the numbers together, and all the variables
-3c-(2c^2+6c)+18=0
We get rid of parentheses
-2c^2-3c-6c+18=0
We add all the numbers together, and all the variables
-2c^2-9c+18=0
a = -2; b = -9; c = +18;
Δ = b2-4ac
Δ = -92-4·(-2)·18
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-15}{2*-2}=\frac{-6}{-4} =1+1/2 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+15}{2*-2}=\frac{24}{-4} =-6 $

See similar equations:

| -x^2=3x-16 | | 3,330÷t=18 | | (-4k+16k^2-4(-2k^2+11k-4))=-4 | | t÷3,330=18 | | (-4k+16k^2-4(-2k^2+11k-4)=-4 | | 6(8n-12)=168 | | (1/2)(-4k+16k^2-4(-2k^2+11k-4))=-2 | | 18=6+4w | | m-12=2184 | | (1/2)(-4k+16k^2-4(-2k^2+11k-4)=-2 | | 9(2n+6)=180 | | x+.2x=130 | | 5-5w=-9 | | 6x-7=10x-47 | | t÷18=3,330 | | x/2+15=32 | | 6k^2-12k+5=0 | | 8x-5x-5=14 | | 0.6•x=210 | | 3+6z=13=6z | | 11z=−66 | | -11z=−66 | | 0.4x+x=140 | | x+.75x=20 | | w-15=1,125 | | -24=3/8p | | x°+7x-8=0 | | x÷3=294 | | 5(x-5)=21 | | 8r+2​ =23​ | | 5y+5=4y−6 | | 22m=34m |

Equations solver categories