220=(12+2x)(16+2X)

Simple and best practice solution for 220=(12+2x)(16+2X) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 220=(12+2x)(16+2X) equation:



220=(12+2x)(16+2x)
We move all terms to the left:
220-((12+2x)(16+2x))=0
We add all the numbers together, and all the variables
-((2x+12)(2x+16))+220=0
We multiply parentheses ..
-((+4x^2+32x+24x+192))+220=0
We calculate terms in parentheses: -((+4x^2+32x+24x+192)), so:
(+4x^2+32x+24x+192)
We get rid of parentheses
4x^2+32x+24x+192
We add all the numbers together, and all the variables
4x^2+56x+192
Back to the equation:
-(4x^2+56x+192)
We get rid of parentheses
-4x^2-56x-192+220=0
We add all the numbers together, and all the variables
-4x^2-56x+28=0
a = -4; b = -56; c = +28;
Δ = b2-4ac
Δ = -562-4·(-4)·28
Δ = 3584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3584}=\sqrt{256*14}=\sqrt{256}*\sqrt{14}=16\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-16\sqrt{14}}{2*-4}=\frac{56-16\sqrt{14}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+16\sqrt{14}}{2*-4}=\frac{56+16\sqrt{14}}{-8} $

See similar equations:

| 7x+9x=-144 | | 8y-14=4y+2 | | 122x+61=59 | | −4(x+5)=16 | | |x+5|=-2x+2 | | 3s12=0 | | -4.1x=8.2 | | ⅓x-3=x^2 | | Y=7m-11 | | -x^2-4x=-7 | | 15-3x=-x+7 | | 97-x=180 | | 2(4x-1)=1/3(12x-18) | | 17/20=17/20x100 | | X²+7x+11=1 | | -y+171=84 | | 0.15w=1.05 | | 600=250*2x | | 177=170-y | | 4(z-2)=6z | | ŷ=2,800+0.02x | | 600=250*x | | 185=-u+17 | | x+18/9=3 | | x+22/5=5 | | -6=x+(4) | | 1=7x-4+2=2x-5 | | y-58/9=131/7 | | 9-(x)=7 | | -2(x+8)=-9x+32 | | 7x2+18x+8=0 | | 5+¾x=7/12 |

Equations solver categories