If it's not what You are looking for type in the equation solver your own equation and let us solve it.
22=2(b+2)b
We move all terms to the left:
22-(2(b+2)b)=0
We calculate terms in parentheses: -(2(b+2)b), so:We get rid of parentheses
2(b+2)b
We multiply parentheses
2b^2+4b
Back to the equation:
-(2b^2+4b)
-2b^2-4b+22=0
a = -2; b = -4; c = +22;
Δ = b2-4ac
Δ = -42-4·(-2)·22
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8\sqrt{3}}{2*-2}=\frac{4-8\sqrt{3}}{-4} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8\sqrt{3}}{2*-2}=\frac{4+8\sqrt{3}}{-4} $
| 5y-11=79 | | -3(6-4a)=9a+9 | | 2(x+3)=(4x)2 | | 6(4x-3)-8=5x+ | | 8-0.03w=1.72w=2.75 | | 7z+12=6z+1 | | 5x^2+20x+19=8 | | a+5=3a+9 | | X^3+5x-4=44,768 | | 15=5-(a+9) | | y^2+4y+140=0 | | p/9+5=6 | | 11x^2+6x+11=0 | | -9(3+r)=45 | | p/9=5=6 | | 12k-3k+5=14 | | 5(x+4)+6=-9 | | 9+3x=3(x-3) | | 2p-4p-7=7 | | 21r2+29r-10=0 | | 8n+12=-12+5n | | 16z^2-64z+62=0 | | 15=8+n/2 | | -2d=2d | | 7(-3+2y)=8(3y-2) | | 6•2/3x=24 | | 3x-4+(x/2)=126 | | -5+4x=51 | | 3(z+14)-25=41 | | 50x+101=25x+1 | | 4(b+4)-34=66 | | 4x-19=6x+6 |