If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23n^2=200
We move all terms to the left:
23n^2-(200)=0
a = 23; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·23·(-200)
Δ = 18400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18400}=\sqrt{400*46}=\sqrt{400}*\sqrt{46}=20\sqrt{46}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{46}}{2*23}=\frac{0-20\sqrt{46}}{46} =-\frac{20\sqrt{46}}{46} =-\frac{10\sqrt{46}}{23} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{46}}{2*23}=\frac{0+20\sqrt{46}}{46} =\frac{20\sqrt{46}}{46} =\frac{10\sqrt{46}}{23} $
| 9=3(g+2)-6 | | 42=54-u | | 14t+4=t-581 | | 1.2x-0.8(×-4)=0.4(×-8) | | 36x-1)=5x-6 | | 7(x-9)=3(x-3)-1 | | 28–6y=4 | | 4x+3-2*x=9 | | 3k=-4+7k | | Y=9x-2.64 | | 10y+2=8y-4 | | p-159=-5p-9 | | -7x+9=26 | | 4x+3-2^x=9 | | 3(4y-15)/5=3y-12 | | 21=x/7+2 | | a-348=8a-5 | | c–5=6 | | -4x+33-2x+81=180 | | L=10x(x2)+10 | | 7(x+2=9x-16 | | -6p-3=p-108 | | 2a/3+a=3/2 | | m=17-8 | | 80-0.6m=100-1m | | -21-13x=-9x+43 | | 4k+6=k-138 | | 38,000-125m+150m=41,000-175m | | 108=6(5n-7) | | 50x-25=775 | | 12+6x=10x | | 1/3x-4/3=12 |