23-1/5d=3/10d+16

Simple and best practice solution for 23-1/5d=3/10d+16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 23-1/5d=3/10d+16 equation:



23-1/5d=3/10d+16
We move all terms to the left:
23-1/5d-(3/10d+16)=0
Domain of the equation: 5d!=0
d!=0/5
d!=0
d∈R
Domain of the equation: 10d+16)!=0
d∈R
We get rid of parentheses
-1/5d-3/10d-16+23=0
We calculate fractions
(-10d)/50d^2+(-15d)/50d^2-16+23=0
We add all the numbers together, and all the variables
(-10d)/50d^2+(-15d)/50d^2+7=0
We multiply all the terms by the denominator
(-10d)+(-15d)+7*50d^2=0
Wy multiply elements
350d^2+(-10d)+(-15d)=0
We get rid of parentheses
350d^2-10d-15d=0
We add all the numbers together, and all the variables
350d^2-25d=0
a = 350; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·350·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*350}=\frac{0}{700} =0 $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*350}=\frac{50}{700} =1/14 $

See similar equations:

| -4(2y+3)-20=-6(y+7)+2y | | -18+x5x=12x-1 | | -5(5.25+3.1x)=6.2+(2.5+19) | | A2+4a+3=0 | | 2y+y=39 | | -(6y+2)-(-5y-3)=-5 | | x-3/4=-50 | | 32x=x+24 | | 15=x/10800 | | x-3/5=-50 | | 4(2x+327)=41(16x–4)-12 | | 5t-10+8t=3+t-8 | | 1/5(-20k+55)=3+12k | | -3(2s-4)-12=-2(6s+7)-2 | | -168=-9r-6 | | 6n+-3n=18 | | (1/125)^x+15=3125^(3/5x)-1 | | 4x-34=2x-10 | | 201X+6=7x-26 | | v-18=-24 | | 4(2x+327)=41(16x–4)-12 | | -1d+18-4d=60 | | 1/2x-7=1/5x+2 | | 2x+4=−(−7x+6 | | 6n^=24n | | 11/6+x=65/12 | | 2x+x/3)=-5 | | 5y+35=28+10y | | 5t-2(5+4t)=3+t | | r/2+9=17 | | -2(2s-4)-8=-2(4s+1)-3 | | 30=48/x |

Equations solver categories