If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23p=5p^2+24
We move all terms to the left:
23p-(5p^2+24)=0
We get rid of parentheses
-5p^2+23p-24=0
a = -5; b = 23; c = -24;
Δ = b2-4ac
Δ = 232-4·(-5)·(-24)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-7}{2*-5}=\frac{-30}{-10} =+3 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+7}{2*-5}=\frac{-16}{-10} =1+3/5 $
| 22-2d=18 | | -3x-2=-176 | | -56+9x=19+14x | | 8p+2=82 | | 14x-6=7x+36 | | 60=x+34 | | 8x-225=-x+63 | | 95=23+8p | | -49-5x=50-8x | | Y=9+5(x+8) | | 98=x-18 | | 21.03(z-4)=15 | | 1x+x=-3+2x | | 2x-40=4x+14 | | 13x-100=5x+44 | | 46.50d=13 | | 2x-x+5=16 | | 9x-1+6x+58+87=90 | | Y=5+5(x-8) | | 12+3=2x | | n-43=32 | | −4x−14=6 | | 4=6/5w | | 200m+12=644 | | 3x+1+x+(-11)=180 | | 10k−7=7k−15 | | 3x+1+x+-11=180 | | 6/5s=-2 | | -1,2n+0,3=1,2 | | 10v2=13v+3 | | 21+3d=-2(8d-9) | | 72+10y+y=-16 |