If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23x^2+19x-12=0
a = 23; b = 19; c = -12;
Δ = b2-4ac
Δ = 192-4·23·(-12)
Δ = 1465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{1465}}{2*23}=\frac{-19-\sqrt{1465}}{46} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{1465}}{2*23}=\frac{-19+\sqrt{1465}}{46} $
| 16/4=x/10 | | X(3x+7)=49 | | 1/2x+3/2(×+1)-1/4=5 | | 5p-6p-10=p-4-2 | | 12x+12=6x+44 | | 4(x+2)/3=5(x-2)/2 | | 12x12=6x+44 | | x2=37−x2 | | 0.45/x=2.05 | | x(x+100)=1.10 | | 2x-8=12*0.75 | | 0.00315x=x/1.0-x | | {-7}{2}t-2=-4-7t− | | 5x+4/4=2 | | 0.56x=x/100-x | | 9.8t^2-100t-200=0 | | 4.9t^2-100t-100=0 | | w−4=2 | | g+1=7 | | 4=j-3 | | 4=3-j | | B+18-6w=50 | | 2=4-g | | 6=11-h | | 21=b+10 | | 56-0.56x=x | | 4=11+s | | 13+4=32-x | | 35=2m+9 | | -100=10t-t^2 | | 4/9=x/26 | | 6c-3=5c-4 |