If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23y^2+34y=0
a = 23; b = 34; c = 0;
Δ = b2-4ac
Δ = 342-4·23·0
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-34}{2*23}=\frac{-68}{46} =-1+11/23 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+34}{2*23}=\frac{0}{46} =0 $
| -6=-1+n/2 | | 7-s/6=-26 | | -6-7q=-5q+6 | | (2x-50)+(x+20)+30=180 | | 1/2y-13=5 | | d−154=1 | | 18+2/5d=28 | | -4+12x=32 | | .12(x-4200)=3000 | | m/3-16=20 | | 9x/2-5=22 | | -x-3=-2x+5 | | 23-27c=-28 | | 7x-8=8+7x-3+3x | | 7x+25=13+3 | | 39=7x-(-6) | | 3(2x+1)=x+11 | | 60=180(n-2)÷n= | | 8x^2x1=0 | | 28n-14=-11 | | 243/8-15=x | | 4(2+a)=8+4a | | 0.06p+4.5=22.5 | | -x-3=2x+5 | | x/3+(-17)=-11 | | -25d+6=-5 | | 12f-3f=45 | | x2−12x+20=1 | | -7x-(-8)=50 | | 8140=x^2-10x+65 | | 21÷3x=9 | | 2xx3x=155 |