If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24(-3+2x)=(18-x)(27-x)
We move all terms to the left:
24(-3+2x)-((18-x)(27-x))=0
We add all the numbers together, and all the variables
24(2x-3)-((-1x+18)(-1x+27))=0
We multiply parentheses
48x-((-1x+18)(-1x+27))-72=0
We multiply parentheses ..
-((+x^2-27x-18x+486))+48x-72=0
We calculate terms in parentheses: -((+x^2-27x-18x+486)), so:We add all the numbers together, and all the variables
(+x^2-27x-18x+486)
We get rid of parentheses
x^2-27x-18x+486
We add all the numbers together, and all the variables
x^2-45x+486
Back to the equation:
-(x^2-45x+486)
48x-(x^2-45x+486)-72=0
We get rid of parentheses
-x^2+48x+45x-486-72=0
We add all the numbers together, and all the variables
-1x^2+93x-558=0
a = -1; b = 93; c = -558;
Δ = b2-4ac
Δ = 932-4·(-1)·(-558)
Δ = 6417
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6417}=\sqrt{9*713}=\sqrt{9}*\sqrt{713}=3\sqrt{713}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(93)-3\sqrt{713}}{2*-1}=\frac{-93-3\sqrt{713}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(93)+3\sqrt{713}}{2*-1}=\frac{-93+3\sqrt{713}}{-2} $
| 11x•16=127 | | 4x-6(6)=-4 | | 1/5x-1.8=1/10x+6.1 | | -3.2-4x=4.4 | | 3v^2-5=14 | | 6d-15d-(-12d)=-9 | | 3x–5=2x+15 | | x+5-15=26 | | 6y-6+4y)=26 | | 9•4x=3 | | 4(4x+6)=6×4 | | x-5/6=7x+1/10 | | X=2.75+-0.25y | | y/1.5=21 | | 0.2(x+50)-6=0.4(3×+20 | | X+5=2x-7-I | | 3=6s=4(s-3)+19 | | 4x+3x=2× | | 7x-21=12 | | X+5=2x-I | | 7(x+3)-4(5x-2)=11 | | 7n-4n-6=13 | | 12(x+3)=4(2x+9)+4× | | R2=8-7r | | 115x=50 | | -8(-4-4x)=4 | | 1/3=n=2/3 | | 0.0004-6.85m=0.000970 | | 3(3x–1)=15 | | 7x+4=8x-11 | | 6x^2-2x+3=3 | | 5-(2x-7)=26 |