24-3(6-3x)=11/4x

Simple and best practice solution for 24-3(6-3x)=11/4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24-3(6-3x)=11/4x equation:



24-3(6-3x)=11/4x
We move all terms to the left:
24-3(6-3x)-(11/4x)=0
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-3(-3x+6)-(+11/4x)+24=0
We multiply parentheses
9x-(+11/4x)-18+24=0
We get rid of parentheses
9x-11/4x-18+24=0
We multiply all the terms by the denominator
9x*4x-18*4x+24*4x-11=0
Wy multiply elements
36x^2-72x+96x-11=0
We add all the numbers together, and all the variables
36x^2+24x-11=0
a = 36; b = 24; c = -11;
Δ = b2-4ac
Δ = 242-4·36·(-11)
Δ = 2160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2160}=\sqrt{144*15}=\sqrt{144}*\sqrt{15}=12\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-12\sqrt{15}}{2*36}=\frac{-24-12\sqrt{15}}{72} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+12\sqrt{15}}{2*36}=\frac{-24+12\sqrt{15}}{72} $

See similar equations:

| s-10=4 | | -12x+2(x-4)+9x=9x-58 | | 2(m+3)/3=6m+2 | | (x-2)^2+17=17 | | 2(x+3)+6=3x-9 | | (2/7)x-2=x-(1/2) | | q+-2=-6 | | -3x+5x-16=2(x-3)-26 | | y=-12=18 | | 4/5(v-7)=2 | | 2(x+1)-3=6x+1-4x | | -28-6x+3x=14 | | (x-2)^2+17=0 | | -5.5(d-2)=-12.1 | | 6x–2(x+4)=12 | | 3x+0.25x=14.25 | | y+8=-1 | | X^2-22x+121=4 | | 7(2x+1)=37+4x | | v+-15=-9 | | x=-10.5 | | 30/6=6x/6 | | -6.5(n-5)=18.5 | | 5b-9+3b=7 | | 6x—2(x+4)=12 | | 4x^2+29=24x | | 4x+1/6=2x-3/4 | | −5x−16=9x+x−1 | | x2−100=0 | | -2.5=p+7.1= | | 2(4w-1=-10w-3)+4 | | 5x^2=2x^2+75 |

Equations solver categories