If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24-5x/x-2+8x-49/4+x=28/x-2-13
We move all terms to the left:
24-5x/x-2+8x-49/4+x-(28/x-2-13)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x-2-13)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
x-13)!=2
x∈R
-5x/x+8x+x-(28/x-15)+24-2-49/4=0
We add all the numbers together, and all the variables
9x-5x/x-(28/x-15)+22-49/4=0
We get rid of parentheses
9x-5x/x-28/x+15+22-49/4=0
We calculate fractions
9x+(-5x-112)/4x+(-49x)/4x+15+22=0
We add all the numbers together, and all the variables
9x+(-5x-112)/4x+(-49x)/4x+37=0
We multiply all the terms by the denominator
9x*4x+(-5x-112)+(-49x)+37*4x=0
Wy multiply elements
36x^2+(-5x-112)+(-49x)+148x=0
We get rid of parentheses
36x^2-5x-49x+148x-112=0
We add all the numbers together, and all the variables
36x^2+94x-112=0
a = 36; b = 94; c = -112;
Δ = b2-4ac
Δ = 942-4·36·(-112)
Δ = 24964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{24964}=158$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(94)-158}{2*36}=\frac{-252}{72} =-3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(94)+158}{2*36}=\frac{64}{72} =8/9 $
| -x+2(-1)=1 | | 1/2x-8=3(-3) | | 3x+2=4(x+1)-1 | | -4+2y=1 | | 4u-5=-25 | | C=25(x-10) | | 10k-22=48 | | -5=5+5y | | u+1.6=9.49 | | -2+2y=1 | | 9(c-86)=90 | | -7p-8p=-5(-4+6p)-4(p+5) | | K(0)=6x2-7x-3 | | x+8=2x+6-2(x+4) | | C=25x-10 | | d+49=90 | | 2^3x+8^x=2^1/5 | | C=25x | | 14=8+2q | | -8-9n=140 | | x=1/2(3x-9) | | s/20=5 | | 12u-7u=10 | | m=88=3(5) | | w-12=24 | | 10=3b-b | | 8+5/4-3=n | | 0.5x.9=1.1 | | 4+3h=16 | | 15=6o-o | | F+f+4=42 | | 5x-3(x-5)=8+4x+15 |