240/(x+2)*2+4x=240

Simple and best practice solution for 240/(x+2)*2+4x=240 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 240/(x+2)*2+4x=240 equation:



240/(x+2)*2+4x=240
We move all terms to the left:
240/(x+2)*2+4x-(240)=0
Domain of the equation: (x+2)*2!=0
x∈R
We add all the numbers together, and all the variables
4x+240/(x+2)*2-240=0
We multiply all the terms by the denominator
4x*(x+2)*2-240*(x+2)*2+240=0
We multiply parentheses
8x^2+16x-480x-960+240=0
We add all the numbers together, and all the variables
8x^2-464x-720=0
a = 8; b = -464; c = -720;
Δ = b2-4ac
Δ = -4642-4·8·(-720)
Δ = 238336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{238336}=\sqrt{12544*19}=\sqrt{12544}*\sqrt{19}=112\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-464)-112\sqrt{19}}{2*8}=\frac{464-112\sqrt{19}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-464)+112\sqrt{19}}{2*8}=\frac{464+112\sqrt{19}}{16} $

See similar equations:

| 12/5/x=6 | | -22=3s—-8 | | 94=171-v | | -3(2z+5)=6(-z+4) | | 236=-w+65 | | 4^5x-1=3^2x+6 | | 3.5x-16.35=8.5 | | 3(v+8)=-3(3v-3)+6v | | -2(-8v+4)-3v=7(v-1)-3 | | .25(w-4.3)=4 | | -2(4t-2)+6t=8t-3 | | 5/9(f-32)=16 | | 40-2k=-7(2+8k) | | x/4=0.65 | | h/5/4=16 | | 5+4r=-7 | | -4x-2=2(x+5) | | (a/3)-(9/2)=2a+1 | | X²-12x-8=0 | | 4 x^ 2−36 x+72 = 0 | | x²=2^x | | 5(x−5)+6=5x−19 | | 11+9n=7n+13 | | -2(w+9)=8w-28 | | -4(1-n)=4n-1 | | h/15=12 | | 4x-13=5x+3 | | 9x+5x=71 | | 11x-2(x-8=9(x+1)+5 | | -2w+24=-9(w-5) | | 29.5/32=x/4 | | 28=2(u+6)+6u |

Equations solver categories