If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24000=(24000/x-200)(x+4)
We move all terms to the left:
24000-((24000/x-200)(x+4))=0
Domain of the equation: x-200)(x+4))!=0We multiply parentheses ..
x∈R
-((+24000x^2+96000x-200x-800))+24000=0
We calculate terms in parentheses: -((+24000x^2+96000x-200x-800)), so:We get rid of parentheses
(+24000x^2+96000x-200x-800)
We get rid of parentheses
24000x^2+96000x-200x-800
We add all the numbers together, and all the variables
24000x^2+95800x-800
Back to the equation:
-(24000x^2+95800x-800)
-24000x^2-95800x+800+24000=0
We add all the numbers together, and all the variables
-24000x^2-95800x+24800=0
a = -24000; b = -95800; c = +24800;
Δ = b2-4ac
Δ = -958002-4·(-24000)·24800
Δ = 11558440000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11558440000}=\sqrt{40000*288961}=\sqrt{40000}*\sqrt{288961}=200\sqrt{288961}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-95800)-200\sqrt{288961}}{2*-24000}=\frac{95800-200\sqrt{288961}}{-48000} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-95800)+200\sqrt{288961}}{2*-24000}=\frac{95800+200\sqrt{288961}}{-48000} $
| a/5+8=16 | | 10/4x=10 | | 1/2a-6=3+a | | 3+1/p=56 | | 4.1=-4y+10.5 | | -2b+4=10+b | | 4^x-8=16 | | X+1=6-4x | | -10+4-5+x=7x-5 | | 5(x-6)=3x+4(x-2) | | 4c-½=3½ | | 4x+6x=4-x | | 0.5x-(0.8-0.2)=0.2-0.3x | | 6y-4=12+2y | | 2^x=53 | | X+50=x+30 | | 9m+40=5+4m | | 2(3x+3)=-3(3x-3)+5x | | 3(2x-4)=2(6+x)-(x+4) | | -3b+8=38+3b | | 2s–3s=60 | | 24-2/a=16 | | 1,10=x+(x+1) | | 8k^2=-64 | | 3x+10=x+60 | | -3.1+v/5=-15.6 | | 10y-20=30 | | 3n-2=5n12 | | y-1÷3-y-2÷4=1 | | 7(3w+7)/4=-6 | | -8(2t+5)=-24 | | 7.2×2.3x=3.2x |