If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2400=40x^2
We move all terms to the left:
2400-(40x^2)=0
a = -40; b = 0; c = +2400;
Δ = b2-4ac
Δ = 02-4·(-40)·2400
Δ = 384000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384000}=\sqrt{25600*15}=\sqrt{25600}*\sqrt{15}=160\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160\sqrt{15}}{2*-40}=\frac{0-160\sqrt{15}}{-80} =-\frac{160\sqrt{15}}{-80} =-\frac{2\sqrt{15}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160\sqrt{15}}{2*-40}=\frac{0+160\sqrt{15}}{-80} =\frac{160\sqrt{15}}{-80} =\frac{2\sqrt{15}}{-1} $
| −9+t=-7 | | 80=p-42.1 | | 15x-11x+22=32+4 | | 45000+2500x=54000+1500 | | 3(7^x)=24 | | -c+18=23 | | -3x^2=15x-42 | | (-1.5x+4)^2=0 | | (4/x-7)-(77-3x/x^2-49)=0 | | -64=4t | | X^2=-3x-54 | | -30x+108=-2x^2 | | 3/9=v12 | | 4x3+2x-16=0 | | 2.333-3x=4x | | 0=-x^2+7x+18 | | (h)(h+3)(h+4)-126=0 | | -20x+32=-2x^2 | | 50=-10t+80−10t+80 | | 10x-2=4x+40x | | 2x^2-36=6x | | 52=30-x | | 35=43-2b | | 5n+29=94 | | 1.5=3x-6 | | 22y-8=14 | | 52=27-x | | 30-x=52 | | 3/8=x/62 | | 27-x+30-x=52 | | 7(1-11x=) | | 3-2y=-y-2 |