If it's not what You are looking for type in the equation solver your own equation and let us solve it.
240=(2x+30)(2x+26)
We move all terms to the left:
240-((2x+30)(2x+26))=0
We multiply parentheses ..
-((+4x^2+52x+60x+780))+240=0
We calculate terms in parentheses: -((+4x^2+52x+60x+780)), so:We get rid of parentheses
(+4x^2+52x+60x+780)
We get rid of parentheses
4x^2+52x+60x+780
We add all the numbers together, and all the variables
4x^2+112x+780
Back to the equation:
-(4x^2+112x+780)
-4x^2-112x-780+240=0
We add all the numbers together, and all the variables
-4x^2-112x-540=0
a = -4; b = -112; c = -540;
Δ = b2-4ac
Δ = -1122-4·(-4)·(-540)
Δ = 3904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3904}=\sqrt{64*61}=\sqrt{64}*\sqrt{61}=8\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-112)-8\sqrt{61}}{2*-4}=\frac{112-8\sqrt{61}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-112)+8\sqrt{61}}{2*-4}=\frac{112+8\sqrt{61}}{-8} $
| 2x-6=-x+4 | | y=75y= | | (3x-14)=2x+9 | | 7n+1-6n=-5 | | 2x+1.3=8.3 | | (2n+1)=n+61 | | b^2=80 | | b^2=23 | | 5x-3x+280=1150 | | p−6=6 | | -12÷5=-12p÷-4 | | 4.4+y/3.7=5 | | 5/16=10/3x | | (2x+5)=x+10 | | 3(2x-10)=50 | | 9*x^2-14x-21=0 | | 12x+12=16x+18 | | x+42+3x+90=180 | | 2=w2 | | 20x+12=86 | | -5x-2x+4=-81 | | H(t)=-4.9t^2+8t+1 | | 2p+3÷4=p÷2 | | k−-2=6 | | 3/5x+1/8=1/10x-1/4 | | P=3t^2-20+47 | | 9x+3=-8x-31 | | w/4=4.3 | | 52-6(x)=10 | | 9x+3=-8-31 | | m/16=-19 | | 10=-v/20 |