244=2(3w+18)2w

Simple and best practice solution for 244=2(3w+18)2w equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 244=2(3w+18)2w equation:



244=2(3w+18)2w
We move all terms to the left:
244-(2(3w+18)2w)=0
We calculate terms in parentheses: -(2(3w+18)2w), so:
2(3w+18)2w
We multiply parentheses
12w^2+72w
Back to the equation:
-(12w^2+72w)
We get rid of parentheses
-12w^2-72w+244=0
a = -12; b = -72; c = +244;
Δ = b2-4ac
Δ = -722-4·(-12)·244
Δ = 16896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16896}=\sqrt{256*66}=\sqrt{256}*\sqrt{66}=16\sqrt{66}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-16\sqrt{66}}{2*-12}=\frac{72-16\sqrt{66}}{-24} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+16\sqrt{66}}{2*-12}=\frac{72+16\sqrt{66}}{-24} $

See similar equations:

| 15d+3d-18d-12d+2d=14 | | 320-12d=180 | | y+32/9=55/6 | | 8n+5n-7n-4n=12 | | w-w+w+5w=18 | | 4x+4x+2+2=90 | | 244=2(w+35)2w | | (5x+2)+2(4x+2)=58 | | 15g-2g-4g-4g-g=16 | | 19+x=28 | | y^2-2y-49=0 | | 4v-4v+2v=10 | | 2x+3-3x=8x+6-2 | | 60-18=a-24 | | 2.6+10.4=x | | 2{5+y}=18 | | 7x+12=3(5x-12( | | 15x+10x=-19 | | -3x+8=7+2x | | x–0.7=0.2 | | 15x+6x=15 | | 5x+4=2(4x+8)-3 | | 3(4+g)=g | | 5x+1-3(x+1)=9x+2 | | 2y+40=68 | | 7^2x=12 | | 10x+4=6x2 | | 19b+-b-4b+8=-20 | | -45=-0.5(x-7.1 | | 11d-3d-3=13 | | 40+55x-120=360 | | 12u-8u+3u-4=3 |

Equations solver categories