24=2+40t+-16t2

Simple and best practice solution for 24=2+40t+-16t2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24=2+40t+-16t2 equation:



24=2+40t+-16t^2
We move all terms to the left:
24-(2+40t+-16t^2)=0
We use the square of the difference formula
-(2+40t-16t^2)+24=0
We get rid of parentheses
16t^2-40t-2+24=0
We add all the numbers together, and all the variables
16t^2-40t+22=0
a = 16; b = -40; c = +22;
Δ = b2-4ac
Δ = -402-4·16·22
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{3}}{2*16}=\frac{40-8\sqrt{3}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{3}}{2*16}=\frac{40+8\sqrt{3}}{32} $

See similar equations:

| |-f-17|=24 | | 4k2+2k−6=0 | | |-f-17||=24 | | 4p^2=296 | | 14x-4=10x+8 | | 12-c-4=14c-10 | | p^2+9=65 | | 14y-10y-4=48.32 | | 7y+3y=-20 | | 3x−6=2x−1 | | |-3h-21||=12 | | 6x+10=5.5x | | 5∣3x+9∣+10=35 | | 8=(10n+4) | | 8(=10n+4) | | 2p+16=5p+1 | | 6-3x=3-6 | | 9x-4=302 | | 12=3v-3 | | 12y-10y-9=32.88 | | 6k-3k=3k+12 | | 2x+4=-41 | | 14=5+3y | | 529=1.5b*23 | | 5|3x+9|+10=35 | | 5m+7=3m+7 | | 10*18=x-3*9 | | 5x+3=14x*6 | | (x+6)^3+40=0 | | 3.6=6.x | | c^2=14c | | 50+x=50 |

Equations solver categories