24=b2+19

Simple and best practice solution for 24=b2+19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24=b2+19 equation:



24=b2+19
We move all terms to the left:
24-(b2+19)=0
We add all the numbers together, and all the variables
-(+b^2+19)+24=0
We get rid of parentheses
-b^2-19+24=0
We add all the numbers together, and all the variables
-1b^2+5=0
a = -1; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-1)·5
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-1}=\frac{0-2\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-2} =-\frac{\sqrt{5}}{-1} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-1}=\frac{0+2\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-2} =\frac{\sqrt{5}}{-1} $

See similar equations:

| -100=p/100 | | 6+7/4z=24+z | | 2/5a+2=-3/10a-5 | | 2(15c+11)=–8 | | -6(-1-5b)=-114 | | -s+4=-18+7s-18 | | 5(2x+-4)+-11=4+3x | | 3x-5+1=180 | | -5(5+3x)+7=87 | | 3x(x+2)=90 | | (36-12x)=4(4+2x) | | 4(x+5)+4=-4(3x+2) | | –y3=1 | | (1/4)(7/2)=n | | p÷8=16 | | 3x(x+2)=180 | | 54=-6b | | -6=3(-5+e) | | 1/47/2=n | | m/2=2/3 | | 5x-2x+8=x+6 | | (36-16x)=4(4+2x) | | |x−50|=15, | | 2-4(3x+6)=4(2x+3)+46 | | 2x+4=8-1 | | 6s-12=24 | | -7=3x+517 | | -8(n+5)=-88+8n | | –18=2r | | -13y+9=18-16y | | 6x−4=3x+5 | | 1/4x7/2= |

Equations solver categories