24=w2-9

Simple and best practice solution for 24=w2-9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24=w2-9 equation:



24=w2-9
We move all terms to the left:
24-(w2-9)=0
We add all the numbers together, and all the variables
-(+w^2-9)+24=0
We get rid of parentheses
-w^2+9+24=0
We add all the numbers together, and all the variables
-1w^2+33=0
a = -1; b = 0; c = +33;
Δ = b2-4ac
Δ = 02-4·(-1)·33
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*-1}=\frac{0-2\sqrt{33}}{-2} =-\frac{2\sqrt{33}}{-2} =-\frac{\sqrt{33}}{-1} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*-1}=\frac{0+2\sqrt{33}}{-2} =\frac{2\sqrt{33}}{-2} =\frac{\sqrt{33}}{-1} $

See similar equations:

| X/5-x+2/10=1 | | 18=-y/3 | | –t−6=–4t | | 2x–10|=40x≥5 | | 5(4x+6)=20x-8 | | 3b+2+56+65=180 | | 5+3x+9=-(x-4) | | 3(x+2)=-5–2(x–3) | | –2k=–3k+6 | | 1/2x-7/10=1/10 | | 110=20+-9w | | -7x=-2.8 | | 54+(8p+4)=180 | | 3+g=-10g-8 | | 5+136x+9=-(x-4) | | 4c+1+35+24=180 | | -2w+1=-w | | 6+12x+3=7x+30+6x | | A=2x^2+4x-21 | | -2.3=v/3+2.5 | | -9v+1=9-7v | | x/2(4+44)=64 | | 6x+18x-7=6(4x+9) | | 5|p-2|-1=29 | | 32x+1=5(x-4) | | 5p-2-1=29 | | 247=117-u | | 2.73=v-1.17/2 | | 3^2x=120 | | 2(15.2x+22.8x+346.56)=7.6 | | X2+6x-223=0 | | 3x=5x-2-3x+6-x-8 |

Equations solver categories