24a-22=-4(1-6a)1/1

Simple and best practice solution for 24a-22=-4(1-6a)1/1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24a-22=-4(1-6a)1/1 equation:



24a-22=-4(1-6a)1/1
We move all terms to the left:
24a-22-(-4(1-6a)1/1)=0
We add all the numbers together, and all the variables
24a-(-4(-6a+1)1/1)-22=0
We multiply all the terms by the denominator
24a*1)-(-4(-6a+1)1-22*1)=0
We add all the numbers together, and all the variables
24a*1)-(-4(-6a+1)1=0
We multiply parentheses
24a*1)-(+24a-4=0
Wy multiply elements
24a^2+24a-4=0
a = 24; b = 24; c = -4;
Δ = b2-4ac
Δ = 242-4·24·(-4)
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{15}}{2*24}=\frac{-24-8\sqrt{15}}{48} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{15}}{2*24}=\frac{-24+8\sqrt{15}}{48} $

See similar equations:

| x2=49/841 | | (5x)+(x)=180 | | -5x-2=5x-18 | | 10-4a=2(-a+8) | | 4x^2-25x+30.94=0 | | 4n+28=6n | | 15u=8u+21 | | x2=49/729 | | 2.93+19=x | | 3b-9-8b=11-32 | | 3(2x=1)=4=10 | | 9d=81d= | | -3/5f=-15 | | x2=784 | | 10=(3.14/4)/x | | -8.8(x-3.75)=26.4 | | 9x+10=3x+34 | | x+19.00x=50 | | 9x10=3x+34 | | 5/6c=2/12 | | 6d+11=4d-7 | | -3(x-1)+8(8-3)=6x+7-5 | | 4x2-x+5=0. | | 3(1+3x)=2(-4+7) | | -10m+7=-7-11 | | 2(x+19)=5x+8 | | p/8=7/9p= | | 9a–2=–2 | | 8t+1=3t—19 | | 10,544=P(1+0.053x6) | | 4z-10=7z-31 | | 3=-2(-1/4s+5)+3 |

Equations solver categories