If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24n^2+55n-24=0
a = 24; b = 55; c = -24;
Δ = b2-4ac
Δ = 552-4·24·(-24)
Δ = 5329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5329}=73$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(55)-73}{2*24}=\frac{-128}{48} =-2+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(55)+73}{2*24}=\frac{18}{48} =3/8 $
| 4(2x-5)=14 | | x^2/11-(x/6)=1 | | -4.4s=57.2 | | Y-6=1/2(x+2 | | x-0.9x=-5.7 | | x-8/2=-4 | | 18+1x=3x-27 | | 15-3/5x=30 | | f(-3)=3(-3^2)+5 | | 7-2x+1+6x=24 | | 9h=-27 | | a+11=21-a | | 4+5(x-7)^3x=9 | | 4+5(x-7)^3@x=9 | | -3+0.1x=7 | | x+3x-2x=x2x+8-5x | | 11x-7+8x+3=180 | | ^2+2x-6=21 | | 3xx=5 | | 7^5x-2=343^4x+5 | | 4x-36=-72 | | j-10=6 | | 5x+75=60 | | 5=1-5k+k | | 10=g-7 | | F(-3)=3x^2+5 | | (x+5)(x-2)=5*6 | | 2/x=3/3.6 | | x–5=13 | | x^2+21x-11=0 | | (10/8)*45-2^66^6^6^6.66666666666666666666666666=x | | 6k2+5k=80 |