If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x(24-x)=2592
We move all terms to the left:
24x(24-x)-(2592)=0
We add all the numbers together, and all the variables
24x(-1x+24)-2592=0
We multiply parentheses
-24x^2+576x-2592=0
a = -24; b = 576; c = -2592;
Δ = b2-4ac
Δ = 5762-4·(-24)·(-2592)
Δ = 82944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{82944}=288$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(576)-288}{2*-24}=\frac{-864}{-48} =+18 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(576)+288}{2*-24}=\frac{-288}{-48} =+6 $
| 84=-3(x-8) | | h/5.15=-2.2 | | 3(2y)+4y=10 | | 31(x+9)-19x=15(x+11) | | (-4)+3.8t=4.36 | | Y=16x2+10x+4 | | Y=-15x3-5 | | -9x/2+2=47 | | -11.1=-0.8a+1.7 | | 6x+5/5=7 | | 2z-5(1z+2)=-8-2z | | 7^15-7^x/(7^x-4-7^3)=7^8 | | 90=6(3x-15) | | Y=16x^2+10x+4 | | 36+20(n+11)=3(-18+10n) | | 7^15-7^x=7^8 | | 11=77/y | | -5t+9=-11 | | 5y-3y+4=9 | | 8x=-4x-12 | | 27^x+3=27^x+3 | | 19=3m-2 | | 24x(24-x)=2880 | | 27^x+3=9^x+3 | | 7/8y-11=-4 | | 18=8m-6 | | 2/3w-1=-2/3 | | 27^x+3=9 | | 2+38=-5(5x-8) | | 3x^2+2x−20=2x^2+15 | | 14+x=42;x=32 | | -13+10=-3(x+5) |