24x*42x=1/16

Simple and best practice solution for 24x*42x=1/16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24x*42x=1/16 equation:



24x*42x=1/16
We move all terms to the left:
24x*42x-(1/16)=0
We add all the numbers together, and all the variables
24x*42x-(+1/16)=0
Wy multiply elements
1008x^2-(+1/16)=0
We get rid of parentheses
1008x^2-1/16=0
We multiply all the terms by the denominator
1008x^2*16-1=0
Wy multiply elements
16128x^2-1=0
a = 16128; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·16128·(-1)
Δ = 64512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{64512}=\sqrt{9216*7}=\sqrt{9216}*\sqrt{7}=96\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96\sqrt{7}}{2*16128}=\frac{0-96\sqrt{7}}{32256} =-\frac{96\sqrt{7}}{32256} =-\frac{\sqrt{7}}{336} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96\sqrt{7}}{2*16128}=\frac{0+96\sqrt{7}}{32256} =\frac{96\sqrt{7}}{32256} =\frac{\sqrt{7}}{336} $

See similar equations:

| X^2+10x+28=3 | | 3(4×x)=5(10+×) | | 17×-12y=38 | | X=-17-3y | | x+x+6+6=180 | | 5x+24+13x+2+8x-3+7x+7=360 | | 4(5x-3)=7(2×+3) | | -(x-4)^(2)+4=0 | | 6(4x-1)=5x+10 | | -10x+4=36 | | -10x+4=62 | | x-2/3+x=1/4=6 | | 24=2/3(9y-15) | | 85=2x+1 | | 5/7x(x-9)=25 | | (x-5)/6=x-20 | | -7x-2(3+6x)=24-4x | | -46-(-37)=x/11 | | -4x-4=-3x+8 | | (1+x)(1+2x)(1+3x)(1+4x)=8 | | X=56+.2x | | 4x+10=12x-30 | | x/1.6=9 | | 12x+4=8x-28 | | 4m+8=2−6m | | 2b+5b-9+24=50 | | 5x+x=506 | | 2x-50=5x-140 | | 34+2y-9=12y-10-5y | | 2b+5b-9=b | | 8(w-8)+6w=-36 | | 5(v+3)+4v=-30 |

Equations solver categories