If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+18x=0
a = 24; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·24·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*24}=\frac{-36}{48} =-3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*24}=\frac{0}{48} =0 $
| 2x+1.5=2 | | h-0.27=1.37 | | (1)/(2)(6t-4)=3t-2 | | 2x+7+5x-14=180 | | (2.5x-3)*4=(2x-2)*3 | | 7(y-10)=14 | | 3k+1=14 | | 4+7v=3+8v | | x2.4x+2.6=17 | | 3(2z-5)=4+11 | | 0.6x+0.9=0.8x-0.5 | | -5=10x+15 | | 1x+6=8x+5 | | 0x=x. | | 4-x/10=-3 | | y=-5-3/4 | | 9x+17=7x | | 6.1=8.2-0.3x | | 4x3+4x3=24+ | | 14x-5=9x+5 | | 2(3x-1)=×-8 | | -9-5h=-8h+9 | | r/5-18=-12 | | 8+4g=22 | | 2x-14x=-5x | | -3(x+2)+9x=6 | | 18.5y=18.2y+0.3y | | 3g-1=-7+2g | | 27=3y+3(6-2y) | | 4x+11+5x=119 | | -4(3+x)+5=4x+12 | | 9-4q=13 |