If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+24x-60=0
a = 24; b = 24; c = -60;
Δ = b2-4ac
Δ = 242-4·24·(-60)
Δ = 6336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6336}=\sqrt{576*11}=\sqrt{576}*\sqrt{11}=24\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24\sqrt{11}}{2*24}=\frac{-24-24\sqrt{11}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24\sqrt{11}}{2*24}=\frac{-24+24\sqrt{11}}{48} $
| 30=8x-10 | | 5^x+5^x-1=30 | | X3-5x=34 | | 2(x–1)+12(4x+6)=5A.32B.0C.1D.34 | | 8n-12=-75+n | | 2(x–1)+12(4x+6)=5x= | | 9c+4=12+8c | | y/7+14=5 | | 9n-6=84 | | 2y-3/5=20/2 | | x/17+4=4 | | 48x-6=426 | | 3-1x=-5+1x | | 9*(7x+3)=27 | | 3r+6=30 | | X/5-3=x/15+3 | | 3x-5=2(x-3)=x | | 2x+(x+3)+90=180 | | 0.6(x+2)=5.55(2x+3) | | 5x-2+4=3x | | m=7=3=m=4 | | 2x+(x+3)+90=360 | | 2l^2-2l-1500=0 | | 54+3x=105 | | 3/4x-4=1/2 | | 212-11x=3x+16 | | 2x+1/3x=7 | | -52+x/3=-9 | | y/9+11=6 | | 7x-13/4+5=2x | | x+4+3=180 | | -19=y/3-4 |