If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+26x-15=0
a = 24; b = 26; c = -15;
Δ = b2-4ac
Δ = 262-4·24·(-15)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-46}{2*24}=\frac{-72}{48} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+46}{2*24}=\frac{20}{48} =5/12 $
| -2=4k-6 | | n+2.5=6.2 | | y=6(2)-7 | | 3/k=3/5 | | 40-9s=5s | | 10-7a=9a | | 3-2(x-4)=5-(x+1) | | 10w+60=-10w | | a=3×9+10×6/36 | | 2t=-21 | | -34-4m=13 | | -4x-5=19x= | | 28+3m=43 | | x/2+5/6=1/6 | | 5/t=48/24 | | (2x+16)=35 | | 15/12=12x | | 26x+5=45 | | 5x-21=4(x-3) | | 15-3c=-6 | | t(8t^2-15t+6)=0 | | (x-1)^24=0 | | -3(11-d)=9 | | 3s+-10s=-35 | | -2u-6u=-48 | | z÷8-6=5 | | 15x+5=22x+4=120 | | 9p+2p-4=-66 | | 5/9f=-4 | | 45/3n;n=5 | | 6x+8=10x+14 | | -37=-y/7 |