If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+40x+6=0
a = 24; b = 40; c = +6;
Δ = b2-4ac
Δ = 402-4·24·6
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-32}{2*24}=\frac{-72}{48} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+32}{2*24}=\frac{-8}{48} =-1/6 $
| 11x+5=x+55 | | 35*x/100=224 | | -7(w+1)=-2w+3 | | X/5/7=12/y/56 | | 1/3p+3=-99 | | 1/2a=26 | | 1/9x-1=2 | | 5x+13+72=180 | | 3x+12+9x=18- | | 9x+39+11x+61=180 | | 108-3x=7x+60 | | 58-7x+54-3x=180 | | 10x-2+102=180 | | |3r|+2=14 | | |3r|+2=15 | | -4+y=23 | | 2=-1+p/4 | | 5(3n-2)=5(n+4) | | 2x-33+78=180 | | 10x+42=82 | | 10(5p-14)=10 | | 8x+16+124=180 | | 4x2=92-7x | | (6x-20)-31=180 | | (-2-4i)(8+5i)+4i(-6-7i)=0 | | 100+0.2x=0 | | K^2-8k-120=0 | | K^2-8k-136=0 | | -2i(-6+2i)+6(5-6i)=0 | | u÷4+1+u÷2=5u÷6 | | (-1-7i)(-8+6i)=0 | | (1+8i)(2+8i)=0 |