If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+x-20=0
a = 24; b = 1; c = -20;
Δ = b2-4ac
Δ = 12-4·24·(-20)
Δ = 1921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1921}}{2*24}=\frac{-1-\sqrt{1921}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1921}}{2*24}=\frac{-1+\sqrt{1921}}{48} $
| 36=6w+8(w+8) | | 38=6(y-2)+4y | | -4(x–10)=11x–8+x | | 168=-w+22 | | 2x=28+5 | | X+0.6x=360 | | 168=@-w+22 | | -u+276=48 | | 215-w=151 | | 5(n-3)=(2+n) | | -3(-15u-18)-3=6 | | -3+6n=n-8 | | -35=2y+8 | | x^2+4x+4=28 | | 2(4w-6)=@36 | | m=2/3;(1,4) | | 2x2-5x-13=20 | | 36=7y+2y | | 7x+-20=52 | | 5r+15=4r+8 | | x²+34=47 | | y+3/5=-1/6 | | 7y-6=-27 | | 2x+6=37 | | 8/5x+9=x | | (5*n-3)=(2+n) | | 6-2w=8 | | -2=v/3+7 | | 360(x+20-x)/x(x+20)=3 | | 2x-50+3x-105=180 | | -2(w+4)=-18 | | 4x+50+6x-20=180 |