If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-18x=0
a = 24; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·24·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*24}=\frac{0}{48} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*24}=\frac{36}{48} =3/4 $
| 2/85=x/340 | | f(-2)=4(-2)^2-5(-2) | | 1/6x+19=27 | | 60=10w | | 14=7(v+3) | | 1/7x+19=30 | | x/6-33=-27 | | 72x=-9 | | -24=-(8+k) | | 431=r−48 | | (-x/5)=8 | | 4x-6=96 | | 58=6n10 | | 3=p+7/3 | | 4a^2-26a+15=0 | | 2x+20+x+70=180 | | 3(q+3/4)=23 | | 8z+18=98 | | 23(q+3/4)=23, | | 4x2−8x−23=0 | | 8h-15=79 | | -9c-1-c=-9c-5 | | 1.4x+5.5=-8 | | 7x-6=41 | | 5(q-79)=80 | | n+6=-9-2n | | 90=m-42 | | 40-2z=2 | | x4.0=8 | | 42-m=90 | | –13d+3d+–8d=18 | | 6(g-80)=54 |