If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-19x+2=0
a = 24; b = -19; c = +2;
Δ = b2-4ac
Δ = -192-4·24·2
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-13}{2*24}=\frac{6}{48} =1/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+13}{2*24}=\frac{32}{48} =2/3 $
| -3n+9=-12 | | x+8/12=2/4x | | 7+0.20x=5+10.30x | | 3b’2-6b=0 | | (356+x)/2=90 | | 15-6=3r | | 25=4e+5 | | x-5/2x+1=2x+3/4x+7 | | -3x–6=18 | | -61+10x+2x=119 | | 3x+1/3=114 | | 4x2=15x | | 2r–1=1 | | x3−4x2+5x−2=0 | | 5=4x-2/6 | | 356+x=90 | | (2x-9)(2x-1)=0 | | 79+94+91+92=x | | 11+2x=3(x+2 | | 21+3n=-6 | | 2x+1=3x-4x | | (3a+7)=(3a+2) | | (6x-4)+(4x+5)=81 | | -83+13x-5x=149 | | (3y-1)+2y+(3y-1)=30 | | 24/x+6=7 | | 8p/2p-10=30 | | 5a+5=2+3.25a | | 7(8b+2)=-29 | | 4x^2-8x-256=0 | | 5/4x+x+1/x=2 | | 5x+0.5=30.5 |