If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-47x+20=0
a = 24; b = -47; c = +20;
Δ = b2-4ac
Δ = -472-4·24·20
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-47)-17}{2*24}=\frac{30}{48} =5/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-47)+17}{2*24}=\frac{64}{48} =1+1/3 $
| 16=|4k-3|-1 | | a/5-11=2 | | 5^2x=60 | | 15*3=x*5 | | 3^(5x-4)=1/9 | | 1x-8=85 | | x+2x=250 | | 1/2(-4+6x)=1−3x+2/3(x+9) | | 9u^+8u-1=0 | | 36/x=3*4 | | 7-9(5r-4)=-47 | | Z^2+z=48 | | 2x+11=52-5x | | 12-9z=-3z+10 | | 3/4-3/4=x-7/32 | | a-14=4*12 | | 10x+7=42 | | 4x+10-3=8x-39 | | 4(1m÷2-9)=-40 | | 3*12=36/a | | -3x+18=24 | | v+13=9/4 | | -3x+2(8x-4)=2(3x+2)+x | | 5x=1/3(6x) | | 2x2=242 | | 4(x+2)=2x-16 | | 10x-58/3=8x | | 2x+5=3-1 | | s/8=40 | | -(-4x+4)=-7(x-1) | | 2+8w=34 | | 2-2.5+1.5y+5=-3y |