If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-8x=0
a = 24; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·24·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*24}=\frac{0}{48} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*24}=\frac{16}{48} =1/3 $
| 4-4r=8(5r+6) | | x2-13-6x=0 | | -3(4-7)=5-(t+1) | | 180=2x*39 | | 6/25=d=30d= | | 2+16x=180 | | (2x+7)-(3x)= | | x+158=150 | | 2+16x+17x-1=180 | | 2(x+7)-2=x3 | | 1=-7z-1-4z | | (2x+7)+(3x)= | | 6r-2r=-26 | | 6n=17 | | (2x-1)(x-3)=(x+5)(x-1 | | x+54+2x-18=180 | | –7n=–6−8n | | w=2-9*1.69 | | 2700=100x+1200 | | X-(x+2)+(x+4)=54 | | 2(7x+19)=−46 | | 1/5x3=9 | | 14y−10y=16 | | 14x−10x=16 | | −3−3(6z−3)=3(9z−8)+4 | | w7=4 | | 4x-10=142 | | t^-20t+360=0 | | 5^-3x-2=5^3x | | 30=6x-24 | | 18x−15x=18 | | -2s+6=-8s-10+4s |