If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2=1800
We move all terms to the left:
24x^2-(1800)=0
a = 24; b = 0; c = -1800;
Δ = b2-4ac
Δ = 02-4·24·(-1800)
Δ = 172800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172800}=\sqrt{57600*3}=\sqrt{57600}*\sqrt{3}=240\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-240\sqrt{3}}{2*24}=\frac{0-240\sqrt{3}}{48} =-\frac{240\sqrt{3}}{48} =-5\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+240\sqrt{3}}{2*24}=\frac{0+240\sqrt{3}}{48} =\frac{240\sqrt{3}}{48} =5\sqrt{3} $
| 36=6^x | | 5/6+1/7x=7 | | N*n-3*n-120=0 | | 35g=140 | | 9k-5k=3 | | X(x-3)/2=60 | | 4^2x-8=55 | | 2x-20+x+2x+25=180 | | 4(7-2x)=-24 | | 360/x=120 | | 2x+(x-2)+(x+4)=66 | | 17.58+17.9b+5.08=-18.38+2.7b | | 2/3x+6x=180 | | 3x+40x+24=24 | | -1-4(2m-6)=25-7m | | -13.1g+19.56+16.63=-18.4g-19.46 | | -29+2v=-8(3v-7) | | (1/2)x=63 | | 19r-17=14r+16+7 | | 1x=-2-3(0) | | -a-a-a=8 | | -5h-1-13h=-19h-20 | | -3x+30x-12=-12 | | -29=3z+5z | | -u/5=-30 | | -0.02+11.2c=17.18+12.5c-0.3c | | (1+x)^9=0.2 | | -2w+7=-11-3w+2w | | 12+12y+3=-15+9y | | -9d-7+2d=-28 | | 9y=4-4 | | 3x^+3x=6+3x^ |