If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2=48
We move all terms to the left:
24x^2-(48)=0
a = 24; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·24·(-48)
Δ = 4608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4608}=\sqrt{2304*2}=\sqrt{2304}*\sqrt{2}=48\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{2}}{2*24}=\frac{0-48\sqrt{2}}{48} =-\frac{48\sqrt{2}}{48} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{2}}{2*24}=\frac{0+48\sqrt{2}}{48} =\frac{48\sqrt{2}}{48} =\sqrt{2} $
| 2(4y+1)3y=12 | | -v=-68 | | 5m+π3×9+5m=94 | | 0=^2-18x+64 | | 2x/7-3/5=0 | | 5m+π3×9+5m×=94 | | −17+b/8=13 | | 7x-8x=62 | | 5a+30+10a=180 | | y=4*9+2 | | u+1.7=7.52 | | 8=(15-4x) | | 7+4q=11 | | 6.8x=(-0.5) | | 19+4x+3×=180 | | 51+42+3p=180 | | 5x+8=25x+24 | | 5m+π3×9+5m×√7^3=94 | | x=-3.754x+12-8x+23= | | 20-x=-30 | | r+10/5=4 | | 3z+2(3+Z)=51 | | 28x-11-13x=4x.3+1 | | 51+42+3p=190 | | 4=8x+10^2-20 | | 90+(4x+1)+(5x+19)=180 | | 2p+2p-26+p+36=180 | | -2s=-576 | | 4x-5=8x+7-6x | | y=4*4+2 | | h/5+10=30 | | v+1.27=4.25 |