25-(3x+)=2(x+8)x+

Simple and best practice solution for 25-(3x+)=2(x+8)x+ equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25-(3x+)=2(x+8)x+ equation:



25-(3x+)=2(x+8)x+
We move all terms to the left:
25-(3x+)-(2(x+8)x+)=0
We add all the numbers together, and all the variables
-(+3x)-(2(x+8)x+)+25=0
We get rid of parentheses
-3x-(2(x+8)x+)+25=0
We calculate terms in parentheses: -(2(x+8)x+), so:
2(x+8)x+
We add all the numbers together, and all the variables
2(x+8)x
We multiply parentheses
2x^2+16x
Back to the equation:
-(2x^2+16x)
We get rid of parentheses
-2x^2-3x-16x+25=0
We add all the numbers together, and all the variables
-2x^2-19x+25=0
a = -2; b = -19; c = +25;
Δ = b2-4ac
Δ = -192-4·(-2)·25
Δ = 561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{561}}{2*-2}=\frac{19-\sqrt{561}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{561}}{2*-2}=\frac{19+\sqrt{561}}{-4} $

See similar equations:

| 97=-3-4(-1+8k) | | -2/3x-16/3=0 | | 2.5x+.5x=7.5+3.5x | | 15-3(4-3x)=47 | | 2 | | 2 | | 2 | | 5x-(3-2x)=8 | | 2 | | x/2x3=13 | | -2/3x-5=10 | | 2 | | 2 | | -1/2x-3=0 | | 2x-250+x=1200 | | 1.1x+3.1=5.3 | | 22n-6=23 | | 4(9+-3n)=144 | | 1.1x+3.1=53 | | 2x/90=30-2x | | (w+1)+2w=5(w-1)+5 | | 6t+5=4t-9 | | 6x-9=5x-10 | | 5a+2a-3=-24 | | 3/4(5/6-1/2n)=3/8 | | -0.01x^2+2x+1=0 | | 29.94+0.05m=32.99 | | -1/2x=-1/2 | | 18x-1=34x | | -1/2x-1/2=0 | | 4t=34 | | v/3-8=11 |

Equations solver categories