25-(4x+5)=2x(x+8)+x

Simple and best practice solution for 25-(4x+5)=2x(x+8)+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25-(4x+5)=2x(x+8)+x equation:



25-(4x+5)=2x(x+8)+x
We move all terms to the left:
25-(4x+5)-(2x(x+8)+x)=0
We get rid of parentheses
-4x-(2x(x+8)+x)-5+25=0
We calculate terms in parentheses: -(2x(x+8)+x), so:
2x(x+8)+x
We add all the numbers together, and all the variables
x+2x(x+8)
We multiply parentheses
2x^2+x+16x
We add all the numbers together, and all the variables
2x^2+17x
Back to the equation:
-(2x^2+17x)
We add all the numbers together, and all the variables
-4x-(2x^2+17x)+20=0
We get rid of parentheses
-2x^2-4x-17x+20=0
We add all the numbers together, and all the variables
-2x^2-21x+20=0
a = -2; b = -21; c = +20;
Δ = b2-4ac
Δ = -212-4·(-2)·20
Δ = 601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-\sqrt{601}}{2*-2}=\frac{21-\sqrt{601}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+\sqrt{601}}{2*-2}=\frac{21+\sqrt{601}}{-4} $

See similar equations:

| 6/7k+21=-110+40 | | 8(1/2+x)=2(4-x) | | x/2+9=x/4+20 | | 8(w-6)-(1-6w)=13w | | (3x-16)+(2x+15)+(8x-19)=180 | | x+.1x=282 | | 7/12x=12 | | 2.5(b+5)=40 | | 2n-3(4n+5)=-6(n-3-1 | | 4+3/5*h=-12/5*h-1 | | 5(g+8)-30=103 | | 14.3p-32.24=127.93 | | x^2+6x=111 | | 1/4x+1/3x=12 | | -9(k+6=-108 | | 5-(2x-7)=4 | | 6(x-1/3)=18-2x | | 0.01x+3(0.05+x)+2(0.1+x)=1.80 | | 9667=x+0,21x | | (16/9)x-(2/3)=2/3 | | 6.72+4a=18.75 | | x+10+3x=11 | | 34+t=75 | | 17x2-36x+6.5=0 | | -3.7j+1.07=-3.8j | | -5.7+2.68d=-14.02 | | 1.4x=8 | | 2-1.4a=-2.9 | | 5(-9x)=15 | | 3x^2-128x+1440=0 | | y=-1÷4×+2 | | 63z-72=54z-36 |

Equations solver categories