If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25-1+7y+4(y+4)=-5(5y-3)-8(y+1)21y+10
We move all terms to the left:
25-1+7y+4(y+4)-(-5(5y-3)-8(y+1)21y+10)=0
We add all the numbers together, and all the variables
7y+4(y+4)-(-5(5y-3)-8(y+1)21y+10)+24=0
We multiply parentheses
7y+4y-(-5(5y-3)-8(y+1)21y+10)+16+24=0
We calculate terms in parentheses: -(-5(5y-3)-8(y+1)21y+10), so:We add all the numbers together, and all the variables
-5(5y-3)-8(y+1)21y+10
We multiply parentheses
-168y^2-25y-168y+15+10
We add all the numbers together, and all the variables
-168y^2-193y+25
Back to the equation:
-(-168y^2-193y+25)
-(-168y^2-193y+25)+11y+40=0
We get rid of parentheses
168y^2+193y+11y-25+40=0
We add all the numbers together, and all the variables
168y^2+204y+15=0
a = 168; b = 204; c = +15;
Δ = b2-4ac
Δ = 2042-4·168·15
Δ = 31536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{31536}=\sqrt{144*219}=\sqrt{144}*\sqrt{219}=12\sqrt{219}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(204)-12\sqrt{219}}{2*168}=\frac{-204-12\sqrt{219}}{336} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(204)+12\sqrt{219}}{2*168}=\frac{-204+12\sqrt{219}}{336} $
| -15p^2-28+41p=0 | | 2x2+12x=14 | | 1-6/x+2=0 | | 41p-28-15p^2=0 | | n-14/7=-7 | | 8x-10=x+25 | | (x)−2=5x−2 | | 8a-3(3a+6)=23 | | X2+20=10x | | (x)−2=5x− | | 5(3w+7)4=-7 | | -5x+10+6x-10=5 | | 6t+14=58 | | 3xx7=8+6(x+2) | | 60000/x=5/100 | | x*11.4=76 | | 3t+7t+10=60 | | X2-12x=13 | | (5x−3)(2x+1)=46−x | | 0-1=4-5x | | 2/3x=10x-30 | | 6x+5(x+3)=9x+6 | | 3x+4(x+5)=2 | | X2+8x=-10 | | -28+e=-10 | | (2x+7)=(X-8) | | 7(4s+10)=210 | | 16=(x-4)-(x-8) | | 8x-3x=5x=55 | | -4r/5r+6=1/6 | | 20,16/x=4x | | 5(2x+4=12 |