If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25.97+18.87y(0.003122-y)=100-65.36y(1+y)
We move all terms to the left:
25.97+18.87y(0.003122-y)-(100-65.36y(1+y))=0
We add all the numbers together, and all the variables
18.87y(-1y+0.003122)-(100-65.36y(y+1))+25.97=0
We multiply parentheses
-18y^2+0.056196y-(100-65.36y(y+1))+25.97=0
We calculate terms in parentheses: -(100-65.36y(y+1)), so:We get rid of parentheses
100-65.36y(y+1)
determiningTheFunctionDomain -65.36y(y+1)+100
We multiply parentheses
-65y^2-65y+100
Back to the equation:
-(-65y^2-65y+100)
-18y^2+65y^2+65y+0.056196y-100+25.97=0
We add all the numbers together, and all the variables
47y^2+65.056196y-74.03=0
a = 47; b = 65.056196; c = -74.03;
Δ = b2-4ac
Δ = 65.0561962-4·47·(-74.03)
Δ = 18149.94863799
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65.056196)-\sqrt{18149.94863799}}{2*47}=\frac{-65.056196-\sqrt{18149.94863799}}{94} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65.056196)+\sqrt{18149.94863799}}{2*47}=\frac{-65.056196+\sqrt{18149.94863799}}{94} $
| 171=240-u | | 3.1x=14.26 | | 16.13+20y(0.004185-y)=100-74.07y(1+y) | | 80.65+19.61y(0.006482-y)=100-9.76y(1+y) | | 24x0.25= | | 14.71+21.74y(0.004254-y)=100-73.53y(1+y) | | 64.52+25y(0.002976-y)=100-20.83y(1+y) | | 69.44+20y(0.005616-y)=100-12.82y(1+y) | | 22=u/3-11 | | 12.35+21.51y(0.005537-y)=100-68.03y(1+y) | | 4+4x=27 | | 12.20+19.61y(0.005478-y)=100-76.34y(1+y) | | 19.61+24.39y(0.003262-y)=100-64.10y(1+y) | | 4x=0.32 | | 6(3-2x)=24 | | 9b=14 | | 3y2-10y+8=0 | | X+(3x+3)=25 | | 1/5f-2/3=-1/5f+2/3 | | -4/5f+1=18 | | 2/5z-3/2=5/2+2/5z-1 | | 3y+2/5=17 | | 5(3x-3)=2(6+3x) | | 72.99+20.41y(0.004095-y)=100-16.39y(1+y) | | 3-2x=18-5x | | 11x/6=264 | | 2(x+2)^2-8=56 | | 8+3x-17=21 | | 28+5x+12=45 | | 4-x÷3=6 | | 2a+5=a+11 | | 9x+35=62 |