2592=(x)(x+8)(x-2)

Simple and best practice solution for 2592=(x)(x+8)(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2592=(x)(x+8)(x-2) equation:


Simplifying
2592 = (x)(x + 8)(x + -2)

Reorder the terms:
2592 = x(8 + x)(x + -2)

Reorder the terms:
2592 = x(8 + x)(-2 + x)

Multiply (8 + x) * (-2 + x)
2592 = x(8(-2 + x) + x(-2 + x))
2592 = x((-2 * 8 + x * 8) + x(-2 + x))
2592 = x((-16 + 8x) + x(-2 + x))
2592 = x(-16 + 8x + (-2 * x + x * x))
2592 = x(-16 + 8x + (-2x + x2))

Combine like terms: 8x + -2x = 6x
2592 = x(-16 + 6x + x2)
2592 = (-16 * x + 6x * x + x2 * x)
2592 = (-16x + 6x2 + x3)

Solving
2592 = -16x + 6x2 + x3

Solving for variable 'x'.

Reorder the terms:
2592 + 16x + -6x2 + -1x3 = -16x + 16x + 6x2 + -6x2 + x3 + -1x3

Combine like terms: -16x + 16x = 0
2592 + 16x + -6x2 + -1x3 = 0 + 6x2 + -6x2 + x3 + -1x3
2592 + 16x + -6x2 + -1x3 = 6x2 + -6x2 + x3 + -1x3

Combine like terms: 6x2 + -6x2 = 0
2592 + 16x + -6x2 + -1x3 = 0 + x3 + -1x3
2592 + 16x + -6x2 + -1x3 = x3 + -1x3

Combine like terms: x3 + -1x3 = 0
2592 + 16x + -6x2 + -1x3 = 0

The solution to this equation could not be determined.

See similar equations:

| 12=(x)(x+4)(x-1) | | x+5x^2+6=15-31x | | solvex+5x^2+6=15-31x | | -6y+2y=-2 | | 2*x^3+6*x^2+9*x-16=0 | | 2*x^3+3*x-21=0 | | C=2(3.14)14 | | 6x+30y=24 | | ex+5=2 | | 1.5x-2.5y=8.5 | | 9x-20y=6 | | 8x+9y=42 | | f+8=3 | | 100=3y+(2y+5) | | 9+9+4= | | 6y(5-3/8y) | | a^3+3a^2+a+3=0 | | v/5=12.5 | | x/-5=95/15 | | 1.3+0.9x=2+.4x | | 5z^3+3z^2+5z+3=0 | | (b^3+8c^3)(b-2c)(b^2+2bc+4c^2)= | | 4x+2x=13-3 | | ((64y^6)/(x^-3))^(1/3) | | (2b-1)(2b-1)(2b-1)(2b-1)(2b-1)(2b-1)(2b-1)= | | 2x+5=16x^2-48x+36 | | (2x+y-32)(2x+y+32)= | | y^4(y^2+2y-4)= | | d/dx(e^x(cosx)) | | (ab^2-c^3)(ab^2+c^3)= | | 3(2x+5)=4(25+2y) | | (3-x^2)(9+3x^2+x^4)(27+x^6)= |

Equations solver categories