25=y2+15

Simple and best practice solution for 25=y2+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25=y2+15 equation:



25=y2+15
We move all terms to the left:
25-(y2+15)=0
We add all the numbers together, and all the variables
-(+y^2+15)+25=0
We get rid of parentheses
-y^2-15+25=0
We add all the numbers together, and all the variables
-1y^2+10=0
a = -1; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-1)·10
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*-1}=\frac{0-2\sqrt{10}}{-2} =-\frac{2\sqrt{10}}{-2} =-\frac{\sqrt{10}}{-1} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*-1}=\frac{0+2\sqrt{10}}{-2} =\frac{2\sqrt{10}}{-2} =\frac{\sqrt{10}}{-1} $

See similar equations:

| 2x^2-5x+16+2x^2-5x+16=56 | | 20x-28=18x-6 | | 2x^2-5x+16+2x^2+5x-24=180 | | (x-5)°+(4x+10)°=180° | | 2k^2+2k-4=0 | | X=84-5y | | Y=-8x^2-3x-13 | | 2x^2-5x+16=152 | | 15t+11=21 | | 2x=7.37(0.5-x) | | 3m+m=7 | | -6y+4=16 | | 7x+7-9=180 | | 3m+2=-13 | | 151/2-31/2=y | | 20.5=2.5a | | n-2.8=9.2 | | (d)=10^1.5dV | | 65(3x)(2x)=180 | | (d)=101.5dV | | q/3=24 | | 16^2x+2=64 | | 9m-9=8m+5 | | 5x-2x=99 | | 5.x^2-8x+15=0 | | 115+(x+10)=180 | | 0.75x+4=0.50x+9 | | 30/4x–4/3=24/6x | | 5x+4-x=-6x-3+11x | | 3.x^2+16x+55=0 | | 12x+9=22x-9 | | 5=4/3x4 |

Equations solver categories