If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25a^2-64=0
a = 25; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·25·(-64)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80}{2*25}=\frac{-80}{50} =-1+3/5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80}{2*25}=\frac{80}{50} =1+3/5 $
| -1/5z=4 | | 25/7=-35z | | 15/7=-35p | | 7/4m-2=2(4+m)-5 | | K^2+18k+60=6 | | 14x+7=16x-9 | | 3x+3/4=-4x-3/4 | | 0.14n+0.08(4500-n)=0.09(4500) | | (30-y)(y)=176 | | 18-2x=4x-18 | | 5000-0.3p=4000+0.7p | | -3x+8=6x+12 | | 4x+4/8=2x-1 | | (4πr3)/3=V | | −3y^2+8y−3=0 | | 10x+20-5x=-4x+24 | | .31m=6+.11m | | 4+2.2h=−3.7 | | 14-6(a+2)=+a | | −3y2+8y−3=0 | | 2=(84-70)/(7/n) | | 1-2x+9=16 | | 120=x+((x^2)/20) | | 5,7-2,1x=3,1(x-1,7) | | 2/3+1/5=3/x | | 4y2/2y=6 | | -2(4-3y)=3+9(y+1) | | 21/5=15n | | 1/2a=7/5 | | 5x/(x3+5)=5/(x2-7) | | 2(x-4)+4=-3-3(x-4) | | -2/5x+4=0 |