25c(0.5c)=86.3(40-c)

Simple and best practice solution for 25c(0.5c)=86.3(40-c) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25c(0.5c)=86.3(40-c) equation:



25c(0.5c)=86.3(40-c)
We move all terms to the left:
25c(0.5c)-(86.3(40-c))=0
We add all the numbers together, and all the variables
25c(+0.5c)-(86.3(-1c+40))=0
We multiply parentheses
0c^2-(86.3(-1c+40))=0
We calculate terms in parentheses: -(86.3(-1c+40)), so:
86.3(-1c+40)
We multiply parentheses
-86.3c+3452
Back to the equation:
-(-86.3c+3452)
We add all the numbers together, and all the variables
c^2-(-86.3c+3452)=0
We get rid of parentheses
c^2+86.3c-3452=0
a = 1; b = 86.3; c = -3452;
Δ = b2-4ac
Δ = 86.32-4·1·(-3452)
Δ = 21255.69
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(86.3)-\sqrt{21255.69}}{2*1}=\frac{-86.3-\sqrt{21255.69}}{2} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(86.3)+\sqrt{21255.69}}{2*1}=\frac{-86.3+\sqrt{21255.69}}{2} $

See similar equations:

| 4a-2(a+a)=6 | | 24y+36=36 | | -83-6x=4x+37 | | .5y+11=13 | | 12x^2+120x+108=0 | | x/6-3=0 | | 6x+2°=8x-14° | | -5x-18=-3x+12 | | (11y-6)^2+25=0 | | 2.7x-7=1.7x-7 | | 75-5(2x6)= | | 2x2-8x-20=0 | | -20+3x=6x+13 | | 4/5x^2-200=0 | | k(k-2)=15 | | X^2-2y-1=0 | | (2x+4)/3=(x)/6-3 | | -4x-14=-6x+6 | | r/3.5=5.4/4.2 | | 3(y+9)=12y+133 | | x-4=0.7 | | 14c=4 | | k(k-2)=5 | | 6=20+x/2 | | 10x+2-8x+3=8x+1-x+8 | | -6x-2x=9 | | -19-×=5x+23 | | 1000=180+2.5x | | 2/3w-5=5/3w | | (2x+4)/3=x/6-3 | | -6x-6=10-4x | | 2/9-5x=-268/9 |

Equations solver categories