If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25c+10c^2=0.
a = 10; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·10·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*10}=\frac{-50}{20} =-2+1/2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*10}=\frac{0}{20} =0 $
| -13+1+6n-5n=8n-n | | 51+4x-3=90 | | -v+1-3-5=v+3 | | -19=-3x+2*1 | | 63x=-9 | | 11u−9u=18 | | 11+3n=n+3 | | 5^2n-37=100 | | 4+7a=7a+1+a | | 10s-6s=8 | | 4+7a=7a | | 11g-7g=20 | | -4(2+x)=-5 | | 4(x-10)=-20 | | 28x+x^2=1040 | | 50+2x-19=90 | | -7-3p+3p=2p-3p | | 3x+5=-x-19 | | -4(2+x=-5 | | 26=x+21 | | 3(-5x+5)=3x-21 | | -4(x-7)=-32 | | 0.75(8x+4)=7x+2 | | 10(x+5)=-40 | | 2b-7=7-4b+5b-13 | | -8x+7(-3x-3)=-46-4x | | -3(x+6)=-11 | | -6x+8+2x=12 | | 2(x+10)=28 | | 3+3a-3a=a-2 | | -7(x-8)=63 | | F=20x^-1 |