If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25c^2+80c-64=0
a = 25; b = 80; c = -64;
Δ = b2-4ac
Δ = 802-4·25·(-64)
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-80\sqrt{2}}{2*25}=\frac{-80-80\sqrt{2}}{50} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+80\sqrt{2}}{2*25}=\frac{-80+80\sqrt{2}}{50} $
| 32-7n=46 | | 6m²+18m=0 | | 4u−2u=16 | | 3(x-2)^3/4+4=28 | | 40=15-5x | | 11+4(10-6x)=19-16x | | 5/3x+1/3=131/3+8/3 | | 12n+45=441 | | 12x=3x-54 | | 14x-3(5x-7)=33 | | 12n+56=441 | | -9.6=y/0.3 | | (M+2)/3=m/5 | | x/0.6=-0.6 | | 8(-2x-4)+10x+2=-52 | | 12+3a=3 | | M+2/3=m/5 | | 2x+12+2x+5+7x−1=180 | | -15x=-68 | | 0.003x^2+60=0 | | -10-4y=10-80 | | 5x−6+3x+16+x+8=180 | | 2(x-1)+8=40 | | (2x-1)^2-(x+1)^2=9x(x-3)=3x(3x-1)(x-1)=96 | | 2x+14+x^2=49-1 | | 2d+6.5=24.5 | | 3x-1.2=10.8 | | -1/5a+21=25 | | 6x-5=12x-49 | | 580=t7400÷5252 | | 2(a+4)=4(a-3) | | 2820=64t+1140 |