If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+40x-9=0
a = 25; b = 40; c = -9;
Δ = b2-4ac
Δ = 402-4·25·(-9)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-50}{2*25}=\frac{-90}{50} =-1+4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+50}{2*25}=\frac{10}{50} =1/5 $
| 7q=8q+3 | | 25/6=10c/3 | | -5u+2(u+4)=-17 | | t^2+14t-3=0 | | 7x+3=-3+5x+22 | | 5x+5(4x+10)=175 | | -7w-5=4(w+7) | | 0.6(25k-7.5k)+9=20 | | 36-5x=10+8x | | 1x+12=3x+6 | | 80b^2=5 | | -3+5x=6x+7 | | 10x-18=3x | | 4/x-1=3/x+2 | | (X*x+1)=0 | | 4x+3+2x+9=90 | | 9x/2x+7=1 | | 5q-15=60 | | -4x=2(x+7)=16 | | -2+4x=-x-17 | | 2/3(5–x)=1/4(4x+6)+1 | | 2/3(5–x)= 1/4(4x+6)+1 | | 2x-×=54 | | 2−5(−4n+6)=32 | | 2x^2-12×=0 | | 59=28^x | | 8-2w=-3(w-8) | | 15(x+1)-7(x+9=4x | | 7x+8=74-4x | | 4/x+1/5=3/x | | 112n^2-63=0 | | 2y+2(y-2)=5y3(y10) |