If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-100x+96=0
a = 25; b = -100; c = +96;
Δ = b2-4ac
Δ = -1002-4·25·96
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-20}{2*25}=\frac{80}{50} =1+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+20}{2*25}=\frac{120}{50} =2+2/5 $
| 33=7g+5 | | X^2+7x-87,75=0 | | (3x+4)=(5x+8) | | -2k+19=3-1 | | 10p+5(2p)=480 | | x+12=76* | | 10p+5(2p)=8 | | 67-x=583 | | 7z^2-14z=-7z | | 7x(x+20)=90 | | 5c+10(2c)=8 | | 5c=10(2c)=8 | | 10x+6=42 | | 4s+9=58 | | 2+8+z=-24 | | −x2+9x−14=0 | | 67x-x=583 | | 50/20=5/h= | | 4976=n/15 | | 6(x+4)-4x=6 | | 3w+6(w-5)=-39 | | -36=3(v+2)+3v | | 5c=4c+1 | | 9x-3+2x+5=90 | | 2x²-7-x(2+1)=0 | | -4x^2+44x-114=0 | | 10x-15x+5=-45x+20 | | 7-(x+1)=9-(2x-2) | | 3x-7x=12x | | 255=17h | | ½(2+4x)=7(x-1)-2 | | g÷3=4 |