If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-40x-8=0
a = 25; b = -40; c = -8;
Δ = b2-4ac
Δ = -402-4·25·(-8)
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-20\sqrt{6}}{2*25}=\frac{40-20\sqrt{6}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+20\sqrt{6}}{2*25}=\frac{40+20\sqrt{6}}{50} $
| 0.50x+3150=39.5 | | .50x+.35(50)=37.5 | | 9z-4=0 | | x^2+12x-49=4x-1 | | (2p-3)/5=7 | | 4X2+20x-25=0 | | 2=(g-4)/7 | | x^2-6x+11=2x+4 | | 4X2+2x-25=0 | | X2+20x-25=0 | | x^2+6x+15=10 | | n3-100n-45000=0 | | 2z/9+2=9 | | x/9+9=5 | | 0.90x-0.15x+0.015x=306 | | z/9+6=2 | | 6x+(–3x+2)=4 | | 8z+5=85 | | 4s+38=126 | | (4x+3)/5=(2x-1)/5 | | (32x^2-8)/(10-x)=0 | | x-1000x=0 | | 3x+30+4X-60=180 | | 7x5=80- | | a/5+4=16 | | 2(2c=3) | | 9/4a-3=2/5 | | x-20+50x+35=35x+10-4x+45 | | 4÷y+7=11 | | 3x+7=(9-x)+2x | | y/2+16=7 | | x-20+50x+35=35x=10-4x+45 |